TABLE OF CONTENTS

THREDS AND THREADING

SCREW THREAD SYSTEMS

- 1712 Screw Thread Forms
- 1712 V-Thread, Sharp V-thread
- 1712 US Standard Screw Thread
- 1712 Unified Screw Thread Forms
- 1713 International Metric Thread
- 1714 ISOMetric Thread System
- 1714 Definitions of Screw Threads

CALCULATING THREAD DIMENSIONS

- 1770 Introduction
- 1770 Metric Application
- 1770 Purpose
- 1771 Calculating And Rounding
- 1771 Rounding of Decimal Values
- 1771 Calculations from Formulas
- 1772 Examples
- 1772 Inch Screw Threads
- 1772 Metric Screw Threads
- 1772 Thread Form Constants

UNIFIED SCREW THREADS

- 1719 American Standard for Unified Screw Threads
- 1719 Revised Standard
- 1719 Advantages of Unified Threads
- 1719 Thread Form
- 1720 Internal and External Screw Thread Design Profile
- 1720 Thread Series
- 1721 Inch Screw Thread
- 1722 Diameter-Pitch Combination
- 1723 Standard Series Combinations
- 1750 Coarse-Thread Series
- 1751 Fine-Thread Series
- 1751 Extra-Fine-Thread Series
- 1752 Constant Pitch Series
- 1753 4-Thread Series
- 1754 6-Thread Series
- 1755 8-Thread Series
- 1756 12-Thread Series
- 1757 16-Thread Series
- 1758 20-Thread Series
- 1759 28-Thread Series
- 1760 Thread Classes
- 1760 Coated 60-deg. Threads
- 1762 Screw Thread Selection
- 1762 Pitch Diameter Tolerance
- 1762 Screw Thread Designation
- 1763 Designating Coated Threads
- 1763 Designating UNS Threads
- 1763 Hole Sizes for Tapping
- 1763 Minor Diameter Tolerance
- 1764 Unified Miniature Screw Thread
- 1764 Basic Thread Form
- 1765 Design Thread Form
- 1766 Design Form Dimensions
- 1766 Formulas for Basic Dimensions
- 1767 Limits of Size and Tolerances
- 1768 Minimum Root Flats
- 1769 UNJ Profile

METRIC SCREW THREADS

- 1783 M Profile Metric Screw Threads
- 1783 Comparison with Inch Threads
- 1783 Interchangeability
- 1783 Definitions
- 1784 Basic M Profile
- 1785 General Symbols
- 1785 M Profile Screw Thread Series
- 1785 Mechanical Fastener Coarse Pitch
- 1786 M Profile Data
- 1787 Limits and Fits
- 1791 Limits for Coated Threads
- 1793 Dimensional Effect of Coating
- 1793 Formulas for M Profile
- 1797 Tolerance Grade Comparisons
- 1797 M Profile Limiting Dimension
- 1798 Internal Metric Thread
- 1800 External Metric Thread
- 1805 MJ Profile Metric Screw Threads
- 1805 Diameter-Pitch Combinations
- 1808 Trapezoidal Metric Thread
- 1808 Comparison of ISO and DIN
- 1815 ISO Miniature Screw Threads
- 1815 British Standard Metric Threads
- 1815 Basic Profile Dimensions
- 1816 Tolerance System
- 1816 Fundamental Deviations
- 1817 Tolerance Grades
- 1817 Tolerance Positions
- 1817 Tolerance Classes
- 1818 Lengths of Thread Engagements
- 1818 Design Profiles
- 1818 M Designation
TABLE OF CONTENTS

THREADS AND THREADING

METRIC SCREW THREADS

- Fundamental Deviation Formulas (1819)
- Crest Diameter Tolerance (1820)
- Limits and Tolerances, Table (1820)
- Diameter/Pitch Combinations (1823)
- Limits and Tolerances (1823)
- Diameter/Pitch Table (1824)
- Comparison of Thread Systems (1825)

ACME SCREW THREADS

- General Purpose Acme Threads (1826)
- Acme Thread Form (1826)
- Acme Thread Abbreviations (1828)
- Designation (1828)
- Basic Dimensions (1828)
- Formulas for Diameters (1828)
- Limiting Dimensions (1828)
- Single-Start Screw Thread Data (1828)
- Pitch Diameter Allowances (1828)
- Multiple Start Acme Threads (1833)
- Pitch Diameter Tolerances (1833)
- Centralizing Acme Threads (1833)
- Basic Dimensions (1835)
- Formulas for Diameters (1835)
- Limiting Dimensions (1835)
- Screw Thread Data (1836)
- Pitch Diameter Allowances (1837)
- Pitch Diameter Tolerances (1837)
- Tolerances and Allowances (1838)
- Designation (1844)
- Acme Centralizing Thread (1844)
- Stub Acme Threads (1844)
- Basic Dimensions (1844)
- Formulas for Diameters (1844)
- Limiting Dimensions (1844)
- Stub Acme Thread Designations (1844)
- Alternative Stub Acme Threads (1847)
- Former 60-Degree Stub Thread (1847)
- Square Thread (1849)

BUTTRESS THREADS

- Threads of Buttress Form (1850)
- British Standard Buttress Threads (1850)
- Lowenherz or Löwenherz Thread (1851)
- Buttress Inch Screw Threads (1851)
- Pitch Combinations (1851)
- Basic Dimensions (1851)
- Symbols and Form (1851)
- Buttress Thread Tolerances (1852)

WHITWORTH THREADS

- British Standard Whitworth (BSW) and Fine (BSF) Threads (1858)
- Standard Thread Form (1858)
- Whitworth Standard Thread Form (1858)
- Tolerance Formulas (1859)

PIPE AND HOSE THREADS

- American National Pipe Threads (1861)
- Thread Designation and Notation (1861)
- Taper Pipe Thread (1861)
- Basic Dimensions (1862)
- Length of Engagement (1863)
- Tolerances on Thread Elements (1863)
- Limits on Crest and Root (1864)
- Pipe Couplings (1865)
- Railing Joint (1865)
- Straight Pipe Threads (1865)
- Mechanical Joints (1865)
- Dryseal Pipe Thread (1867)
- Limits on Crest and Root (1867)
- Types of Dryseal Pipe Thread (1867)
- Limitation of Assembly (1867)
- Tap Drill Sizes (1869)
- Special Dryseal Threads (1869)
- Limitations for Combinations (1870)
- British Standard Pipe Threads (1870)
- Non-pressure-tight Joints (1870)
- Basic Sizes (1871)
- Pressure-tight Joints (1871)
- Limits of Size (1871)
- Hose Coupling Screw Threads (1873)
- Screw Thread Length (1875)
- Fire Hose Connection (1875)
- Basic Dimensions (1876)
- Limits of Size (1877)

OTHER THREADS

- Interference-Fit Threads (1878)
- Design and Application Data (1879)
TABLE OF CONTENTS

THREADS AND THREADING

OTHER THREADS

- [1710] External Thread Dimension
- [1710] Internal Thread Dimension
- [1710] Engagement Lengths
- [1710] Allowances for Coarse Thread
- [1710] Tolerances for Coarse Thread
- [1710] Variations in Lead and Diameter
- [1710] Spark Plug Threads
- [1710] BS Spark Plugs
- [1710] SAE Spark Plugs
- [1710] Lamp Base and Socket Threads
- [1710] Instrument & Microscope Threads
- [1710] British Association Thread
- [1710] Instrument Makers’ Screw Thread
- [1710] Microscope Objective Thread
- [1710] Swiss Screw Thread
- [1710] Historical and Miscellaneous
- [1710] Aero-Thread
- [1710] Briggs Pipe Thread
- [1710] Casing Thread
- [1710] Cordeaux Thread
- [1710] Dardelet Thread
- [1710] “Drunken” Thread
- [1710] Echols Thread
- [1710] French Thread (S.F.)
- [1710] Harvey Grip Thread
- [1710] Lloyd & Lloyd Thread
- [1710] Lock-Nut Pipe Thread
- [1710] Philadelphia Carriage Bolt Thread
- [1710] SAE Standard Screw Thread
- [1710] Sellers Screw Thread

MEASURING SCREW THREADS

- [1903] Measuring Whitworth Threads
- [1904] Buckingham Exact Formula
- [1905] Accuracy of Formulas
- [1906] Acme and Stub Acme Thread
- [1906] Checking Pitch Diameter
- [1906] Checking Thread Thickness
- [1907] Wire Sizes
- [1907] Checking Thread Angle
- [1908] Best Wire Diameters
- [1910] Taper Screw Threads
- [1911] Buttress Threads
- [1912] Thread Gages
- [1912] Thread Gage Classification
- [1912] Gages for Unified Inch Threads
- [1915] Thread Forms of Gages
- [1915] Thread Gage Tolerances
- [1917] Tolerances for Cylindrical Gages
- [1919] Formulas for Limits

TAPPING AND THREAD CUTTING

- [1920] Selection of Taps
- [1922] Tap Rake Angles
- [1922] Cutting Speed
- [1922] Tapping Specific Materials
- [1925] Diameter of Tap Drill
- [1926] Hole Size Limits
- [1934] Tap Drill Sizes
- [1935] Tap Drills and Clearance Drills
- [1935] Tolerances of Tapped Holes
- [1936] Hole Sizes before Tapping
- [1937] Miniature Screw Threads
- [1938] Tapping Drill Sizes
- [1938] ISO Metric Threads
- [1939] Clearance Holes
- [1940] Cold Form Tapping
- [1941] Core Hole Sizes
- [1942] Tap Drill Sizes
- [1942] Removing a Broken Tap
- [1942] Tap Drills for Pipe Taps
- [1942] Power for Pipe Taps
- [1943] High-Speed CNC Tapping
- [1944] Coolant for Tapping
- [1944] Combined Drilling and Tapping
- [1945] Relief Angles for Cutting Tools
- [1947] Lathe Change Gears
- [1947] Change Gears for Thread Cutting
- [1947] Compound Gearing

Copyright 2008, Industrial Press Inc., New York, NY

www.industrialpress.com
TABLE OF CONTENTS

THREADS AND THREADING

<table>
<thead>
<tr>
<th>1947</th>
<th>Fractional Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948</td>
<td>Change Gears for Metric Pitches</td>
</tr>
<tr>
<td>1948</td>
<td>Change Gears, Fractional Ratios</td>
</tr>
<tr>
<td>1949</td>
<td>Quick-Change Gearbox Output</td>
</tr>
<tr>
<td>1951</td>
<td>Finding Accurate Gear Ratios</td>
</tr>
<tr>
<td>1951</td>
<td>Lathe Change-gears</td>
</tr>
<tr>
<td>1952</td>
<td>Relieving Helical-Fluted Hobs</td>
</tr>
</tbody>
</table>

THREAD ROLLING

<table>
<thead>
<tr>
<th>1953</th>
<th>Thread-Rolling Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>Flat-Die Type</td>
</tr>
<tr>
<td>1953</td>
<td>Cylindrical-Die Type</td>
</tr>
<tr>
<td>1953</td>
<td>Rate of Production</td>
</tr>
<tr>
<td>1954</td>
<td>Precision Thread Rolling</td>
</tr>
<tr>
<td>1954</td>
<td>Steels for Thread Rolling</td>
</tr>
<tr>
<td>1954</td>
<td>Diameter of Blank</td>
</tr>
<tr>
<td>1954</td>
<td>Automatic Screw Machines</td>
</tr>
<tr>
<td>1955</td>
<td>Factors Governing the Diameter</td>
</tr>
<tr>
<td>1955</td>
<td>Diameter of Threading Roll</td>
</tr>
<tr>
<td>1955</td>
<td>Kind of Thread on Roll</td>
</tr>
<tr>
<td>1956</td>
<td>Application of Thread Roll</td>
</tr>
<tr>
<td>1956</td>
<td>Thread Rolling Speeds and Feeds</td>
</tr>
</tbody>
</table>

THREAD GRINDING

<table>
<thead>
<tr>
<th>1958</th>
<th>Thread Grinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>Wheels for Thread Grinding</td>
</tr>
<tr>
<td>1958</td>
<td>Single-Edge Wheel</td>
</tr>
<tr>
<td>1959</td>
<td>Edges for Roughing and Finishing</td>
</tr>
<tr>
<td>1959</td>
<td>Multi-ribbed Wheels</td>
</tr>
<tr>
<td>1960</td>
<td>Ribbed Wheel for Fine Pitches</td>
</tr>
<tr>
<td>1960</td>
<td>Solid Grinding Threads</td>
</tr>
<tr>
<td>1960</td>
<td>Number of Wheel Passes</td>
</tr>
<tr>
<td>1960</td>
<td>Wheel and Work Rotation</td>
</tr>
<tr>
<td>1961</td>
<td>Wheel Speeds</td>
</tr>
<tr>
<td>1961</td>
<td>Work Speeds</td>
</tr>
<tr>
<td>1961</td>
<td>Truing Grinding Wheels</td>
</tr>
<tr>
<td>1961</td>
<td>Wheel Hardness or Grade</td>
</tr>
<tr>
<td>1962</td>
<td>Grain Size</td>
</tr>
<tr>
<td>1962</td>
<td>Grinding by Centerless Method</td>
</tr>
</tbody>
</table>

THREAD MILLING

(Continued)

<table>
<thead>
<tr>
<th>1965</th>
<th>Changing Pitch of Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>Helical Milling</td>
</tr>
<tr>
<td>1965</td>
<td>Lead of a Milling Machine</td>
</tr>
<tr>
<td>1966</td>
<td>Change Gears for Helical Milling</td>
</tr>
<tr>
<td>1966</td>
<td>Short-lead Milling</td>
</tr>
<tr>
<td>1966</td>
<td>Helix</td>
</tr>
<tr>
<td>1967</td>
<td>Helix Angles</td>
</tr>
<tr>
<td>1968</td>
<td>Change Gears for Different Leads</td>
</tr>
<tr>
<td>1978</td>
<td>Lead of Helix</td>
</tr>
<tr>
<td>1981</td>
<td>Change Gears and Angles</td>
</tr>
<tr>
<td>1982</td>
<td>Determining Helix Angle</td>
</tr>
<tr>
<td>1983</td>
<td>For Given Lead and Diameter</td>
</tr>
<tr>
<td>1983</td>
<td>For Given Angle</td>
</tr>
<tr>
<td>1983</td>
<td>For Given Lead</td>
</tr>
<tr>
<td>1983</td>
<td>For Lead Given DP and Teeth</td>
</tr>
<tr>
<td>1983</td>
<td>Determine Lead of Tooth</td>
</tr>
</tbody>
</table>

SIMPLE, COMPOUND, DIFFERENTIAL, AND BLOCK INDEXING

<table>
<thead>
<tr>
<th>1984</th>
<th>Milling Machine Indexing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>Hole Circles</td>
</tr>
<tr>
<td>1984</td>
<td>Holes in Brown & Sharpe</td>
</tr>
<tr>
<td>1984</td>
<td>Holes in Cincinnati</td>
</tr>
<tr>
<td>1984</td>
<td>Simple Indexing</td>
</tr>
<tr>
<td>1985</td>
<td>Compound Indexing</td>
</tr>
<tr>
<td>1986</td>
<td>Simple and Compound Indexing</td>
</tr>
<tr>
<td>1991</td>
<td>Angular Indexing</td>
</tr>
<tr>
<td>1991</td>
<td>Tables for Angular Indexing</td>
</tr>
<tr>
<td>1992</td>
<td>Angle of One Hole Moves</td>
</tr>
<tr>
<td>1993</td>
<td>Accurate Angular Indexing</td>
</tr>
<tr>
<td>2008</td>
<td>Indexing for Small Angles</td>
</tr>
<tr>
<td>2009</td>
<td>Differential Indexing</td>
</tr>
<tr>
<td>2009</td>
<td>Ratio of Gearing</td>
</tr>
<tr>
<td>2010</td>
<td>To Find the Indexing Movement</td>
</tr>
<tr>
<td>2010</td>
<td>Use of Idler Gears</td>
</tr>
<tr>
<td>2010</td>
<td>Compound Gearing</td>
</tr>
<tr>
<td>2011</td>
<td>Check Number of Divisions</td>
</tr>
<tr>
<td>2012</td>
<td>Simple and Different Indexing</td>
</tr>
<tr>
<td>2018</td>
<td>Indexing Movements of Plate</td>
</tr>
<tr>
<td>2019</td>
<td>Indexing High Numbers</td>
</tr>
<tr>
<td>2022</td>
<td>Indexing Tables</td>
</tr>
<tr>
<td>2022</td>
<td>Block or Multiple Indexing</td>
</tr>
<tr>
<td>2024</td>
<td>60-Tooth Worm Indexing</td>
</tr>
<tr>
<td>2025</td>
<td>Linear Indexing for Rack Cutting</td>
</tr>
<tr>
<td>2025</td>
<td>Linear Indexing Movements</td>
</tr>
<tr>
<td>2026</td>
<td>Counter Milling</td>
</tr>
</tbody>
</table>